A vision for a more resilient Iowa

The Iowa Watershed Approach

NDRC Qualifications

- Presidential Declared Major Disaster in 2011, 2012, or 2013
- Benefit to low to moderate income (LMI) areas
- Environmental and/or infrastructure most impacted and distressed and unmet recovery needs areas (MID-URN) present
A vision for a more resilient Iowa

The Iowa Watershed Approach

http://www.gis.iastate.edu/gisf/projects/conservation-practices
A vision for a more resilient Iowa

The Iowa Watershed Approach
A vision for a more resilient Iowa

The Iowa Watershed Approach
A vision for a more resilient Iowa

The Iowa Watershed Approach

Best Management Practices
Digitized by ISU and IaDNR

Grassed Waterways
(Actual)

- Potential Selected HUC12
- Selected HUC12

BMPs
- Grassed Waterway
A vision for a more resilient Iowa

The Iowa Watershed Approach
A vision for a more resilient Iowa

The Iowa Watershed Approach

Best Management Practices
Digitized by ISU and IaDNR

Pond Dams
(Actual)

- Potential Selected HUC12
- Selected HUC12

BMPs
- Pond Dam
A vision for a more resilient Iowa

The Iowa Watershed Approach
A vision for a more resilient Iowa

The Iowa Watershed Approach

Best Management Practices
Digitized by ISU and IaDNR

Stripcropping
(Actual)

BMPs
Stripcropping

Potential Selected HUC12
Selected HUC12
A vision for a more resilient Iowa

The Iowa Watershed Approach
A vision for a more resilient Iowa

The Iowa Watershed Approach

Best Management Practices
Digitized by ISU and IaDNR

Terraces
(Actual)

- Potential Selected HUC12
- Selected HUC12

BMPs
- Terrace
A vision for a more resilient Iowa

The Iowa Watershed Approach
A vision for a more resilient Iowa

The Iowa Watershed Approach
A vision for a more resilient Iowa

The Iowa Watershed Approach

Best Management Practices
Digitized by ISU and IaDNR

WASCOBs (Aggregated)

BMPs
WASCOBs per sqmi
- 0.46 - 1.00
- 1.01 - 2.00
- 2.01 - 3.00
- 3.01 - 4.00
- 4.01 - 5.00
- 5.01 - 6.00
- 6.01 - 7.00
- 7.01 - 8.00
- 8.01 - 9.00
A vision for a more resilient Iowa

The Iowa Watershed Approach

Data Sources:
ISU / Iowa DNR
BMP Mapping Project

Legend
- Pond Dam
- Terrace
- Water and Sediment Control Basin
- Contour Buffer Strips
- Stripcropping
- Grassed Waterway
- MID-URN Area
- Stream Centerlines

West Nishnabotna Watershed
White-Cloud West Nishnabotna
HUC12 Existing BMPs

West Nishnabotna Watershed

The University of Iowa
C. Maxwell Stanley Hydraulics Laboratory
Iowa City, Iowa 52242
A vision for a more resilient Iowa

The Iowa Watershed Approach
A vision for a more resilient Iowa

The Iowa Watershed Approach
A vision for a more resilient Iowa

The Iowa Watershed Approach
Existing BMPs for HUC-12 Candidates

<table>
<thead>
<tr>
<th>HUC-12 Name</th>
<th>Contour Buffer Strip (ac/sqmi)</th>
<th>Grassed Waterway (ac/sqmi)</th>
<th>Pond Dams (#/sqmi)</th>
<th>Stripcropping (ac/sqmi)</th>
<th>Terraces (mi/sqmi)</th>
<th>WASCOBs (#/sqmi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honey Creek</td>
<td>0.8</td>
<td>2.5</td>
<td>0.2</td>
<td>0.0</td>
<td>16.1</td>
<td>3.7</td>
</tr>
<tr>
<td>Deer Creek</td>
<td>14.7</td>
<td>3.0</td>
<td>1.0</td>
<td>0.0</td>
<td>13.7</td>
<td>3.9</td>
</tr>
<tr>
<td>Lower Indian Creek</td>
<td>31.5</td>
<td>4.1</td>
<td>0.5</td>
<td>0.0</td>
<td>9.7</td>
<td>2.6</td>
</tr>
<tr>
<td>White-Cloud West Nishnabotna</td>
<td>4.9</td>
<td>3.9</td>
<td>0.6</td>
<td>0.0</td>
<td>7.5</td>
<td>2.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HUC-12 Name</th>
<th>Contour Buffer Strip (ac)</th>
<th>Grassed Waterway (ac)</th>
<th>Pond Dams (#)</th>
<th>Stripcropping (ac)</th>
<th>Terraces (mi)</th>
<th>WASCOBs (#)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honey Creek</td>
<td>14.5</td>
<td>46.8</td>
<td>3.0</td>
<td>0.0</td>
<td>298.5</td>
<td>69.0</td>
</tr>
<tr>
<td>Deer Creek</td>
<td>425.3</td>
<td>87.5</td>
<td>30.0</td>
<td>0.0</td>
<td>394.2</td>
<td>114.0</td>
</tr>
<tr>
<td>Lower Indian Creek</td>
<td>1039.9</td>
<td>136.5</td>
<td>16.0</td>
<td>0.0</td>
<td>321.6</td>
<td>160.0</td>
</tr>
<tr>
<td>White-Cloud West Nishnabotna</td>
<td>133.9</td>
<td>105.8</td>
<td>17.0</td>
<td>0.0</td>
<td>202.6</td>
<td>85.0</td>
</tr>
</tbody>
</table>
Hydrologic Assessment

- Iowa’s Flood Hydrology and Water Quality
- Conditions in each IWA Watershed
 - Hydrology
 - Geology and Soils
 - Topography
 - Land Use
 - Instrumentation/Data records
- BMPs: Existing and Potential
- Hydrologic Model
- Watershed Scenarios
Hydrologic Assessment – What is Being Prepared for the WMA?

- Climate and Historical Streamflow Assessments
 - Average Rainfall
 - Streamflow Patterns
 - Streamflow by Month
 - Peak Flooding Tendencies
 - Streamflow Trends
 - Floods of Record
 - Discuss Abnormal Weather

30-year Average Annual Precipitation for Iowa (1981-2010)

Climate is what you expect; Weather is what you get
Hydrologic Assessment – What is Being Prepared for the WMA?

- Data Sets That Describe Watershed Characteristics
 - Geology & Soils
 - Land Use
 - BMP Mapping (ISU, DNR)
 - Topography

- Instruments/Data Records
 - Streamflow
 - Rainfall
Agricultural Conservation Planning Framework (ACPF)

Conservation Practices:
- Drainage Water Management
- Grassed Waterways
- Buffer Strips
- Water and Sediment Control Basins (WASCOBs)
- Nutrient Removal Wetlands
- Saturated Buffers

Further Information: http://northcentralwater.org/acpf/

Analyze landscape and runoff conditions and suggest potential sites for conservation practices.
A vision for a more resilient Iowa

The Iowa Watershed Approach

Existing (ISU, DNR)

Potential (ACPF, IIHR)
A vision for a more resilient Iowa

The Iowa Watershed Approach

Hydrologic Assessment – What is Being Prepared for the WMA?

Develop and run watershed-scale hydrologic models (HEC-HMS) to estimate watershed responses to rainfall events

- Modeler breaks the watershed down into manageable and representative user defined areas (called subbasins)
- Simulate hydrologic processes using a mathematical approach
- Compare simulated results to observed streamflow (where known) to assess model performance
A vision for a more resilient Iowa

The Iowa Watershed Approach

Hydrologic Model Development Review

- West Nishnabotna: 1,650 square miles
- East Nishnabotna: 1,150 square miles

Subbasins Delineated
What Happens When It Rains?

- Rainfall
- Catchment Model
- Runoff
- Losses and Infiltration
- Surface Depression Storage
A vision for a more resilient Iowa

The Iowa Watershed Approach

East Nishnabotna: Atlantic USGS Gage (2014 Calibration Event)
A vision for a more resilient Iowa

The Iowa Watershed Approach

West Nishnabotna: Randolph USGS Gage (2014 Validation Event)
A vision for a more resilient Iowa

The Iowa Watershed Approach

- Calibrated/Validated Hydrologic Model Uses:
 - Identification of High Runoff Potential Areas
 - Analysis of Flood Mitigation Strategies
 - Increasing Infiltration
 - Distributed Storage
A vision for a more resilient Iowa

The Iowa Watershed Approach

Data Collection & Monitoring
A vision for a more resilient Iowa

The Iowa Watershed Approach

Iowa Flood Center
The University of Iowa
100 C. Maxwell Stanley Hydraulics Laboratory
Iowa City, IA 52242

319-384-1729
www.iowafloodcenter.org
A vision for a more resilient Iowa
The Iowa Watershed Approach

Agricultural Conservation Planning Framework:
Staff Creek Watershed

Conservation Practices:
• Drainage Water Management
• Grassed Waterways
• Buffer Strips
• Water and Sediment Control Basins (WASCOBs)
• Nutrient Removal Wetlands
• Saturated Buffers

Further Information:
http://northcentralwater.org/acpf/